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THE DISCRETE PLATEAU PROBLEM: 
ALGORITHM AND NUMERICS 

GERHARD DZIUK AND JOHN E. HUTCHINSON 

ABSTRACT. We solve the problem of finding and justifying an optimal fully 
discrete finite element procedure for approximating minimal, including unsta- 
ble, surfaces. In this paper we introduce the general framework and some 
preliminary estimates, develop the algorithm, and give the numerical results. 
In a subsequent paper we prove the convergence estimate. 

The algorithmic procedure is to find stationary points for the Dirichlet en- 
ergy within the class of discrete harmonic maps from the discrete unit disc 
such that the boundary nodes are constrained to lie on a prescribed boundary 
curve. An integral normalisation condition is imposed, corresponding to the 
usual three point condition. Optimal convergence results are demonstrated 
numerically and theoretically for nondegenerate minimal surfaces, and the ne- 
cessity for nondegeneracy is shown numerically. 

1. INTRODUCTION 

A minimal surface or solution of the Plateau Problem is a surface in Rn which 
has the topology of the unit disc, spans a given boundary curve F C Rn, and either 
minimises, or more generally is stationary for, the area functional. Comprehensive 
references for the classical theory of minimal surfaces can be found in the books 
by Dierkes, Hildebrandt, Kiister, Wohlrab [DHKW] and by J.C.C. Nitsche [N2]. 
Various formulations of the problem are discussed in Section 3. 

In this and a subsequent paper [DH4] we solve the problem of finding and justi- 
fying an optimal, fully discrete, finite element procedure for approximating general 
(including unstable) minimal surfaces. In [DH1] we developed a boundary integral 
method but the effects of numerical quadrature were not considered. An outline of 
some of this work appears in the conference proceedings [DH3], where there is also 
a summary of the algorithm for the finite element method. Apart from this, the 
main related results are due to Tsuchiya. He gives an existence proof for discrete 
minimal surfaces in [T2, T3] and proves convergence to a continuous solution in 
the H1(D)-norm. Although this seems to be the first complete convergence result 
for the approximation of parametric minimal surfaces, an indirect argument is used 
which does not give any order of convergence with respect to the grid size, and 
convergence is proved only for minimisers. 

The Plateau Problem is highly nonlinear and the techniques here can be applied 
to other geometric and nonlinear problems. Technical difficulties also arise since 
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local uniform convexity (more generally, nondegeneracy) of the energy functional 
is measured with respect to one norm, but the energy functional is only smooth 
with respect to a stronger norm. Moreover, the discrete energy functional is not 
the restriction of the original functional (unlike the situation in [DH1]). 

Let D be the unit disc in Ri2 . An equivalent characterisation of minimal surface 
which we will use is the following. Let ? be the class of maps u: D -* R' such that 
UD: AD - F is monotone, ul&D satisfies a "three-point condition" (see (9) and 
in our case (21)), and u is harmonic. The function u E F is said to be a minimal 
surface if u is stationary in ? for the Dirichlet energy D(u) = f D IVu 2 See the 
fourth definition in Section 3.1. Such maps u provide a harmonic and conformal 
parametrisation of the corresponding minimal surface. 

Following this characterisation, a first approximation to our numerical method 
is as follows. Let Dh be a quasi-uniform triangulation of D with grid size controlled 
by h. Let Fh be the class of continuous piecewise-linear maps Uh: Dh -* R n for 
which Uh(0j) E F whenever Oj is a boundary node of Dh, which satisfy the three- 
point condition and which are discrete harmonic. Note that we do not require 
"monotonicity" of Uh 1Dh. The function Uh E ?Fh is said to be a discrete minimal 
surface if Uh is stationary within ?h for the Dirichlet energy D(Uh) = 2 D VuI 2U 

A member of Fh is determined by its values at the boundary nodes. Thus 'Fh is a 
finite dimensional (nonlinear) manifold in some high dimensional Euclidean space. 
The first and second derivatives of the Dirichlet energy restricted to this manifold 
can be computed from a knowledge of F. From this, one can compute discrete 
minimal surfaces. 

The main convergence result in [DH4] is that if u is a "nondegenerate", harmonic 
and conformally parametrised minimal surface spanning F, then there exist discrete 
minimal surfaces Uh such that 

(1) IU -UhllHl(Dh) < ch, 

where c depends on -y and the nondegeneracy constant for u but is independent of 
h. 

We now discuss some of the main ideas in our approach. For both computational 
and theoretical reasons it is important to move the nonlinearity from the constraint 
manifold and onto the energy functional. Following [Stl] and [St2], fix a smooth 
parametrisation -y: S1 -, F, where Si is the unit circle in R2; it will be convenient to 
distinguish between Si and the boundary OD of D. See Figure 1. A map f: OD -* r 
can be uniquely written in the form f = -y o s, where s: AD S s1. The set of all 
maps s: AD - S' is an affine vector space, since we have a well defined notion 
of what it means to add to such a map s another map from the (ordinary) vector 
space of maps a: AD IR. We will restrict considerations to maps s with winding 
number one, which satisfy a certain normalisation condition (see (21)) and which 
have a finite "norm" in one of two possible senses. The corresponding affine Banach 
spaces will be denoted '- and T (= 'H n CO); see Definitions 3.4 and 3.5. Somewhat 
informally, members of 't have finite "norm" in the H1/2 sense and members of T 
have finite "norm" in the H1/2 n CO sense. The associated spaces of variations are 
ordinary Banach spaces and are denoted by H and T (= H n C0), respectively. 

Rather than the area functional, we will work with the following energy func- 
tional E. Let u = (D o s): OD -* Rn be the (unique) harmonic extension of -y o s, 
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for s c T. The energy functional E is defined on T by 

(2) E(s) = J X v J 2 V(Q o s). 

The class of competing maps is now the linear (affine) space T, but the energy 
functional E(s) is no longer quadratic in s. In particular, the Euler equations are 
highly nonlinear. A parametrised surface u = a ( o s) is a minimal surface if s is 
monotone and stationary for E in T. We remark that E is smooth on T but not 
even C' on N, as indicated in one of the remarks preceding Proposition 3.8. On the 
other hand, "nondegeneracy" is expressed in terms of the H1/2 norm and so refers 
to the space NH rather than to P. Members of NH may "just" fail to be continuous 
and hence to be members of T; counterexamples blow up logarithmically. 

Our numerical and theoretical convergence results are obtained under the condi- 
tion that the minimal surface u be nondegenerate. Such surfaces may have pertur- 
bations which strictly decrease area; i.e., the second derivative of the area functional 
may have negative eigenvalues, but there must be no zero eigenvalues apart from 
those corresponding to reparametrisatons of the surface. More precisely, the eigen- 
values of the second variation E"(s) of the energy functional must be bounded away 
from zero. Minimal surfaces with branch points are always degenerate; a branch 
point on a minimal surface u is a point at which Vu = 0 see the examples in 



4 GERHARD DZIUK AND J. E. HUTCHINSON 

Section 6. On the other hand, minimal surfaces without branch points are gener- 
ically nondegenerate; i.e., arbitrarily small perturbations of the boundary remove 
any nondegeneracy (see Bohme and Tromba [BT]). Moreover, area minimising 
surfaces in R3 have no branch points, at least in the interior (see Osserman [0], 
Alt [Al, A2] and Gulliver [G]). This is not true in RT if n > 4. If y is analytic, then 
area minimisers have no branch points on r; this is not known if -y is not analytic. 

The integral normalisation condition (21) (analogous to the classical three point 
condition (9) ) removes a three parameter family of perturbations corresponding 
to the M6bius group of conformal transformations of the unit disc D. This family 
leaves E invariant and would lead to zero eigenvalues for E"(s) at a minimal surface 
u = (y o s). The integral form is more convenient than the three point condition 
both numerically and theoretically. 

The discrete analogue of T (and NH) is the affine subspace Hh (c T C N) of 
continuous maps Sh AD -* S1 which are piecewise linear with respect to arc length 
on the arc segments joining consecutive boundary nodes. Functions Sh E Nh are 
defined on AD rather than on D,Dh. However, they may be identified in a one-one 
manner with maps from the boundary nodes of Dh into S1, provided the image of 
each arc segment under Sh is less than w, which is no restriction in practice. We 
use the H1/2 norm on Hh and the corresponding metric on Nh. 

Let Uh = I?hI(QY o ,Sh) be the (unique) discrete harmonic extension of the piece- 
wise linear interpolant Ih(YoSh) of SI, E Nh . We remark that IhQ(yosh) :&Dh -* R 
is defined on &DI, and is piecewise linear in the usual Euclidean sense, whereas 'YOSh 

is defined on AD. Note also that Ih(Q o Sh) maps the boundary nodes of &Dh into 
F, the image of I(-y o S h) is a polygon in R" and the image of Uh is a continuous 
and piecewise linear surface. The discrete energy functional Eh is defined on Hh 
by 

(3) Eh(Sh) 2J IVUh J2J V1hh(-hQo sh)2 

Note that whereas NHh C T c NH, Eh is not the restriction of E to Nh. If Sh E Nth iS 

stationary for Eh, we say Uh = (hIh(Yosh) is a discrete minimal surface. Stationary 
points Sh are found by a Newton algorithm which is defined in both abstract and 
matrix-vector form in Section 5. We note that Eh(Sh) depends only on Y and the 
nodal values Shl(0j), where qj ranges over the boundary nodes of Dh. The same 
dependency applies to the first and second derivatives of Eh(Sh), which will be 
explicitly computed. 

The first author would like to thank the Centre for Mathematics and its Ap- 
plications, and the second author would like to thank the Institut fur Angewandte 
Mathematik for their hospitality during the course of this work. Some of the graph- 
ics were done with the program GRAPE developed at SFB 256, Bonn and at the 
University of Freiburg. This research has been partially supported by the Aus- 
tralian Research Council. 

2. PREVIOUS NUMERICAL METHODS 

We briefly review previous numerical methods; for more details see [DH1]. 
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If the graph of a function u: R k- IRt is a (k-dimensional) minimal surface, then 
it satisfies the minimal surface equation 

k i(2 DiU| ) ?- Di u 

The problem of numerical approximations in this setting was perhaps first raised 
by Douglas [Dou2]. He used a finite difference approach, and his paper contains 
both numerical examples and graphics, but the appropriate techniques to prove 
convergence were not then available. In the case of a convex domain and k = 2 
there are now optimal estimates in all norms for finite element approximations; see 
Concus [Co], Johnson & Thomee [JT], Rannacher [Ra], Ciarlet [Ci]. 

The most successful numerical approach up to now in the parametric (i.e., non- 
graphical) setting for polygonal boundary curves uses Courant's function d(T), 
where Tr {O < ri < ... < T?- < 2wr} varies over partitions of AD associated 
in a natural way to the given polygonal boundary; see [Cou]. This idea was used 
by Jarausch [J] to compute approximations to minimal surfaces using finite ele- 
ments on D which are bilinear with respect to polar coordinates. Drawbacks of 
the method are that the grid on D varies with r and has a singularity at the ori- 
gin. Jarausch proves convergence of the functional D with respect to the grid size. 
Wohlrab [Wo] extended this method to partially free minimal surfaces and to more 
general variational problems. Heinz proved that with a slight modification in the 
definition of d(T) it becomes an analytic function. The resulting function is called 
Shiffman's function and was used by Hinze [Hil, Hi2] to compute minimal surfaces 
bounded by polygons. 

Some numerical work has been done in directly minimising the area functional 
over various discrete spaces. Of course any such numerical method leads to theoret- 
ical and numerical problems because of the invariance of the area functional under 
arbitrary diffeomorphisms. Wagner [Wal, Wa2] used the area functional to min- 
imise area for polyhedra spanning a given boundary curve. The same approach was 
used by Steinmetz [Ste] for more complicated problems involving minimal surfaces, 
especially partially free minimal surfaces; see also Tsuchiya [Ti, Prop. 1]. Parks 
[P] approximated minimal surfaces by the level sets of functions of least gradient. 

Mean curvature flow was used by Dziuk [Dz] to compute stable minimal surfaces 
by using finite elements on surfaces; no convergence proof is given. A somewhat 
similar idea with an infinite time step was used by Pinkall and Polthier [PP] to 
compute minimal surfaces and their conjugates. A public-domain program "Surface 
Evolver", which can obtain minimisers for many discrete functionals (including 
the discrete area functional), has been written by Brakke [Br]. Conditions under 
which there is a smooth minimal surface near a discrete minimal surface have been 
obtained by Underwood [U]. Sullivan [Su] has a max flow/min cut type algorithm 
which uses a polyhedral decomposition of space to obtain approximations to area 
minimising currents, and he provides a theoretical analysis. In all these cases, in 
order to obtain reasonable accuracy the numerical estimates require decompositions 
too fine for current workstations. 

Following the lines of the proof of Rado [R] and Douglas [Dou], Tsuchiya gives an 
existence proof for discrete minimal surfaces in [T2, T3] and proves convergence to 
a continuous solution in the H1 (D)-norm. Wilson [Wi] used the Douglas boundary 
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integral form of the Dirichlet functional for harmonic u, 

D(ulaD) - l J u() - (2 dodo$ DQ(u), 
si2 

in order to compute minimal surfaces. Hutchinson [Hu] minimised the conformal 
energy D(u) - A(u), which is always > 0 and equals 0 if and only if u is a minimal 
surface. In some situations this has significant numerical advantages over minimis- 
ing the Dirichlet energy. In addition, arbitrary and not necessarily stable minimal 
surfaces can be found by a minimisation procedure. 

In [DH1] (see also [DH3]) we obtained discrete minimal surfaces by, to be some- 
what imprecise, computing stationary points of a boundary integral restricted to 
certain finite element spaces. More precisely, let -y: S- , r be a fixed parametrisa- 
tion of the given boundary curve. For h > 0 let gh be a partition of AD such that 
the distance between successive nodes is bounded above and below by multiples of 
h which are independent of h. Let Hh be the set of maps Sh: aD -* S1 which are 
continuous and piecewise linear with respect to arc length along arc segments in 
gh Let 

E(sh)= D(uh)= D(Q 0 Sh), 

where Uh is the harmonic extension of ay o s. Note that Uh is smooth, not discrete, 
in the interior of D. We say that Uh is a semi-discrete minimal surface if Sh is 
stationary for E in Nh. We showed that if u is a minimal surface, then there is a 
sequence of semi-discrete minimal surfaces Uh such that 

||U-UhllHl(D) < ch /, 

and in [DH2] we proved an O(h5/2) estimate for the L2 norm. Although this gives 
a better order of convergence than the current method, the algorithm is computa- 
tionally much more intensive. In addition, as noted before, the theoretical analysis 
in [DH1] ignores the effect of quadrature approximations in computing the bound- 
ary integral D(y o Sh). 

3. THE SMOOTH PLATEAU PROBLEM 

3.1. Theoretical background. The classical Plateau Problem consists of finding 
a least area surface of disk type spanning a given wire in Rn. The wire is represented 
by a curve r homotopic to a circle, i.e., by a Jordan curve. 

Let 

D = {z = (x,y) I lzl < 1} 

denote the unit disk in R2. One then looks for functions 

u: D -* 

such that AD is mapped onto r in a one-one (i.e., monotone) way and such that u 
is a minimum for the area functional 

(4) A(u) = lux x uyl. 

To be more precise, one is interested in finding u in the set of admissable functions 

(5) cl(r) ={v E H1(D)n n C0(&D)n I VlaD: AD - r is monotone } 
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such that 

(6) A(u) inf A(v). 
vEC' (F) 

More generally, one defines u E c(r) to be a minimal surface (or solution of 
the Plateau Problem) if u is stationary for A. A minimal surface need not be a 
minimiser, or even stable. 

The area functional A equals Dirichlet's integral 

(7) D(u) = ux 

if and only if u is conformally parametrized; see (12). In general we have A(u) < 
7D(u). Since A is invariant under arbitrary diffeomorphisms it is easier to work with 
D. A variational problem essentially equivalent to (6) is to solve 

(8) DD(u) inf D(v). 
vEC' (F) 

Dirichlet's integral is conformally invariant, i.e., D(u) = D(uow) for any conformal 
diffeomorphism (M6bius transformation) w of the disc D. Thus one should factor 
out the conformal group by some additional assumption on the class C(r) of ad- 
missable functions. Classically this is done by imposing a three-point condition on 
Ula9D Choose any three distinct points zi on AD and three distinct points Pi on r 
and impose the condition 

(9) u(zi) = Pi 

for i = 1, 2, 3. Consequently the class of admissable functions is changed to 

(10) C(F) = {u E H1(D)n n Co(a&D)nI UlaD: AD ? r monotone 

and u satisfies (9).} 

Such a three-point condition is numerically unpleasant because it is an L'-condi- 
tion. The classical three-point condition will be replaced by an L2-condition for 
our purposes; see Definition 3.4. An essentially equivalent second definition then is 
that u E C(F) is a minimal surface if u is stationary for 'D. 

A function u is stationary for D iff u is harmonic and conformal. Thus an 
equivalent third definition is that u E C(r) is a minimal surface if 

(11) Au = 0, 

(12) luxI = auy, ux .Uy = 0. 

This definition shows the highly nonlinear character of the Plateau Problem not 
only because of the conformality relations (12) but also because of the definiton of 
the boundary condition in the class C(r). Note that u has a free boundary on the 
one dimensional manifold F. 

Finally, an equivalent fourth definition is that u is a minimal surface if u E 
C(r) n {vI Av = 0} and u is stationary in this class for D. An advantage of this 
definition is that harmonic maps are uniquely determined by their boundary values, 
and so we are essentially looking for stationary points of a certain functional defined 
over a class of boundary maps from AD to F. This is the approach we will pursue, 
but with a modification to the three point condition. 

The following theorem of Douglas [Dou] and Rado [R] states that the Plateau 
Problem has at least one solution. 
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Theorem 3.1. Let r be a rectifiable Jordan curve in IR3. Then the problem 

(13) D(u) - inf D(v) 
vEC(F) 

has a solution u E C(r7); moreover u is harmonic and conformal. Also, u solves the 
problem 

(14) A(u) inf A(v). 

The boundary map ulaD is a topological mapping onto the curve F. 

Apart from the Douglas-Rado solutions, many curves F have other, possibly 
unstable, solutions to the Plateau Problem. In particular, see the examples in 
Section 6. It is an open question whether there exist at most finitely many solutions 
of the Plateau Problem for a given curve F. From the work of Bohme and Tromba 
[BT] it is known that generically the number of solutions is finite. A result of 
Tomi [To] guarantees that there are only finitely many absolute minimisers for an 
analytic boundary curve F. 

Asymptotic convergence of the numerical method requires regularity of solutions 
up to the boundary. This was proved by Hildebrandt [Hil], Nitsche [Ni], Jager [Ja] 
and Heinz [He]. 

Theorem 3.2. Let u be a minimal surface which maps an open arc A c AD into 
an open portion 1F' C F and assume that F' E Ck,, for some k E N and some 
O< a< 1. ThenuECk,(DUA). 

3.2. Reformulation of the Problem. Assume that F is a Jordan curve in Rn 

with regular Cr-parametrisation 

where r > 3. Although AD {Z E R2 1 lzl = 1} and S1 = {ei I O < 0 < 
2r} -- Rt/27r - [0, 2wr) are naturally isomorphic, we will consider S1 as the domain 
of the fixed parametrisation ay of 1, and consider AD as the boundary of the fixed 
parameter domain for various parametrised surfaces. 

For f: AD -, IRn we denote by 

(D(f):D ,- kn 

its unique harmonic extension to D specified by 

(15) A/\(f) = 0 in D, 
(16) @(f) = f on OD. 

For f:&D -,I R the H1/2(OD) seminorm is defined by 

(17) |f Hl/2(aD) J I 10 f do do, 

the corresponding norm is given by 

l |H1/2 lifIIL2 +I H1/2, 
and the associated inner product is denoted by (,)H1/2. It is standard that 

: H1/2 (OD, Rn) 3- H1 (DI Rn) 

is a bounded linear map with bounded inverse. 



THE DISCRETE PLATEAU PROBLEM: ALGORITHM AND NUMERICS 9 

For future reference we note the following properties which follow from (17). 

(18) llf!lIH112 < Clflc1 119IIH112, 

(19) 1190 oSH1!2 < Cl9glCl IISIIH112. 

Now we can define the energy functional E which replaces Dirichlet's integral in 
(13) and which is defined on certain maps s:&aD - S 

Definition 3.3. For s:aD -Si such that 'y os H1/2(aD,IRn), let 

(20) E(s) 2 J = VJQyos) 2_D(bJyos)). 

That is, E(s) = D(u) where u is the harmonic extension d(Qy o s) of y o s. Notice 
that E(s) is comparable to 1y o S12 /2. As domain for the functional E one first 
chooses a suitable space 7-; see Definition 3.4. Loosely speaking, 7H consists of those 
H'/2 maps s: AD - S1 which wind once around S1 and satisfy a certain normali- 
sation condition; see (21). However, in order to obtain a differentiable functional, 
it will be necessary to restrict E to the subspace 'T of continuous members of 'H. 

In Definition 3.4 and elsewhere, points eic = (cos 0, sin 0) E &9D (or c S1) are 
usually, but not always, denoted by the corresponding angle 0. Note that X is well 
defined by ei only up to multiples of 2wr. 

Definition 3.4. The Hilbert space H is defined by 

H = -9D - Re I I(IH1/2 < oc and (21) is satisfied}, 

where 
,27r ,27 27r 

(21) j (o) do = 0, W cos X do = 0, (, sin 0 do = 0. 

The norm on H is 11 IIH1/2, which by the first condition in (21) and Poincare"s 
inequality is equivalent to I JH1/2. The corresponding affine Hilbert space 'HZ is the 
space of maps s:aD -) S1 such that 

(22) s(>) = $ + - (O) 

for some a E H. Note that addition in (22) is well defined. 

Definition 3.5. The Banach space T is defined by 

T H n C0(aD,IR) 

with norm 

1T(1T = 6H1/2 + 11(||CO. 

The corresponding affine space T is defined by 

T = HnC0(9D, S1). 

Because s E 'H is a periodic perturbation of the "identity" map (see (22)), we 
say s winds once around S1. Notice that the function a in (22) is well defined by s 
up to integer multiples of 27r at each point. But one can show that the only H1/2 
functions whose values lie in the set {2kw I k an integer}' are integer multiples of 
the constant function 27r. It then follows from the first condition in (21) that a is 
in fact uniquely determined by s. The space of variations at s E 'H or s E T is then 
naturally identified with H or T, respectively. 
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The normalisation conditions (21) are the analogue of the three-point condition 
(9). More precisely, it follows from the conformal invariance of Dirichlet's integral 
that E(s) = E(s o g) for any g: AD -) AD, which is the restriction of a Mobius 
transformation. However, for any continuous monotone `s: D -) AD there exists a 
(unique) s = o g, where g is the restriction of a M6bius transformation, such that 
s satisfies (21) (see the Appendix to Section 3 in [DHO] for a proof). Thus there is 
no loss of generality in working in the class of s satisfying (21). 

The energy functional E is well defined and finite on 7H (see Proposition 3.7) 
and conversely, if s is continuous and E(Qy o s) is finite, then s E N; see [St2, 11.2.7] 
and the estimates in [St2, Lemma 11.2.6]. Differentiability of E on T follows from 
Proposition 3.8. 

We are now ready to give the formulation of the Plateau Problem which we use 
in this paper. 

Definition 3.6. The harmonic function 

u = (yos) 

is a minimal surface spanning F, or a solution of the Plateau Problem for F, if and 
only if s E T is monotone and stationary for E, i.e., 

(23) (E'(s), )=O, = V E T. 

The equivalence of this with the formulations of Plateau's Problem in Section 3.1 
is established in [St2]; the main point being to use the stationarity condition to first 
establish the regularity result JD(-y o s) E H2(D, IR). Finding stationary points for 
E is thus equivalent to solving the nonlinear system (11) and (12). 

3.3. Estimates for the energy functional. Although 7H and T are only affine 
Banach spaces, it will be convenient to introduce the notation 

Ilsil = 1 + 11511, 

where sQb) = q + v(0), for various norms on a. Note that flsfl > 1; we will use this 
frequently. 

We now have: 

Proposition 3.7. E:1t - ER and 

E(s) < C11_q2 1 IISIH1/2- 

Proof. 

E(s) H I VTyos)? < )IH1(D) 
? CK 0 5IH1/2(aD) ? 

Cflyfl|lfl| IH1/2, 

from (19). C 

From (20) and formal computation we have 

(24) E(s) = 2jIVuI2, 

(25) E'(s) E(s + t+ ) = jvuvv, 

f=dt t 
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where 

(27) u = D(yos), v =D(y'osl ), w =?(_osY 2). 

Bilinearity gives a corresponding expression for distinct variations in (26). Note that 
the evaluation of the derivatives of E requires the solution of Laplace's equation 
with various boundary conditions. The map -y'os ( can be thought of as a tangential 
vector field defined either along AD or along 1; the map v is its harmonic extension 
and can be thought of as the harmonic variation induced by (. 

Under appropriate smoothness assumptions on ay it is not difficult to prove that 
E is a smooth mapping on T C 7-, see Proposition 3.8. The estimates in Propo- 
sition 3.8 cannot be improved by replacing jj(jT by R6H1/2, unless the regularity 
on s is increased. The main point is that the composition operator s F- * o s is 
smooth on T but not even Cl on 'H. Although we do not need Proposition 3.8 
we include it for comparison with Proposition 3.9. The latter shows that if s is 
sufficiently smooth, then the linear and bilinear operators E'(s) and E"(s) defined 
on T can be extended to bounded linear and bilinear operators defined on H. The 
arguments used in the proof of Proposition 3.9 are simple prototypes of those used 
in proving the convergence result in [DH4]. The proof of Proposition 3.8 is similar; 
see [St2] and also Propositions 5.1, 5.2 and 5.3 in [DH1]. 

Proposition 3.8. If y c C3, then E c C2(T,tR). Moreover, 

(E (s), ()I < C1Y1 02 IIS1 H1/2 11(|1T, 
2 2 

IE (s) (, 7)1 < c 7 |3SIH1/2 jj(IITIITIIT- 

Proposition 3.9. If y c C2 and s c C1, then 

(28) 1(E'(s), )I < Cjj_y 2 2 ISI2 c H1!/2' 

(29) E" (s)( ,I7) < C? c~2 ISI12 1 R6H1/2 II771 H1/2. 

Proof. From (27) and (25), 

J(E'(s),~)j <? |UH1(D) V H1(D) = I1I2. 

But 

I, < C|7Yo SIH112(aD) < cllyllcl llsllci by (19) 

and 

I2 < C?'Yo S (IH1/2(aD) < Cl ho SIIC1 RH1/2 <CY C| 2 |ISlC1 RH1/2 

by (18) and (19). 
For the second derivative we may assume r1 =. Then from (26) 

E (s)( }Vv- +X vuvw Vv +w II + I2, 

since u is harmonic. But 

I, = IV|H12D < cf O S |12 < C 2j? O S1121 g12 < Cjj_||12 2ISI121 g112 VH1rD\C )'O 
H1!2C 

) SCl H1!2 - YC2 S 
H1/ 
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from (27), (18) and (19). Also 

'2 <- 
9 

IW L2(aD) 
a V L2 (aD) 

au2 au2 
? IwIH1(aD) IIIIL2(aD) since D aV j = T whereT is the 

unit tangent vector, using a Fourier series expansion 

? Cl' O SIH1 ll" O S 2 
11L2 from (27) 

? C'|7 ||C1| S ||C1l l'7 C2 | 11L4 

? c '7l2C2 JIsIlCl ll(JH1/2 by a Sobolev embedding theorem. 

This gives the estimate for E". D 

3.4. Nondegeneracy for the energy functional. We will need to consider the 
second order behaviour of E near a stationary point s E T. More generally, if 
s E -H n Cl and a E c2 (in particular, if s is stationary and a E c2 by regularity 
theory; see [DH4]), we use Proposition 3.9 to define the bounded self-adjoint map 

(30) V2E(s):H - H 

by 

(31) (V2E (s) ((), IT)H1/2 = E" (s) TI,) 

for all (, T1 E H. Write 

(32) H - H-EHoEH+, 

(33) = -+ O+ + if(EH, 

for the orthogonal decomposition generated by the eigenfunctions of V2E(s) having 
negative, zero, and positive eigenvalues, respectively. It is not difficult to show from 
elliptic theory that H- and Ho are finite dimensional and that their members are 
smooth, depending on the regularity of '; see the proof of [St2, Proposition 5.6] 
and also [DH4]. 

If s is monotone and stationary for E, we say 

s is nondegenerate if Ho {0}. 
The corresponding minimal surface u = dT(1 o s) is also said to be nondegenerate; 
see [BT]. If s is nondegenerate it follows from standard arguments (see [DH1, 
Proposition 4.9(iii)]) that the eigenvalues of V2E(s) are bounded away from zero. 
In this case we define 

(34) A+ = inf{,u I is a positive eigenvalue of V2E(s)} > 0 

(35) A- = inf{-, I , is a negative eigenvalue of V2E(s)} > 0 

(36) A = min{A+,A-} >0. 

In particular, if ( E H, 

(37) E"(s)(&, E"(s)(o+,dgE"(s)(e, ac) > Acntto2H1/2. 

We call A the nondegeneracy constant for s. 
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4. THE DISCRETE PLATEAU PROBLEM 

4.1. Discrete function spaces. Let gh be a quasi-uniform triangulation of D 
controlled by h; i.e., each triangle has diameter at most h and at least crh for some 
a > 0 independent of h, and has angles bounded away from zero independently of 
h. 

Define 

Dh U{G IGEgh}, 

aDh U{E3 I 1 < j < M} where the E. are the boundary edges, 

-h {oi, ... , IA,} is the set of boundary nodes, 

g\h = {VI, * * , VN} is the set of all nodes, 
where v. = 3j = etj for j = 1, . . . , M. 

Suppose f E Co (&D, RT). Then the continuous and piecewise linear interpolant 
Ihf is defined on aDh (not on AD) by 

(38) Ihf ((1 - t)eiji + teii?+1) (1-t)f (ei0i) + tf (eia+?1) 

for 0 < t < 1 1 < j < M. Here and elsewhere, A,,+, = q1. Note that the image 
of Ih(y o s) is a polygonal approximation to r defined on aDh, and Ih(y o s)(j) = 
a o s(qj) E F for qj E '3h We also need a continuous and piecewise linear (with 
respect to arc length) interpolant IhaDf, defined on aD (as opposed to aDh), given 
by 

(39) JaDf (ei((1t)a?tk+?)) (1-t)f(eia) + tf(eij+1) 

for 0 < t < 1< j < M. 
In order to compare functions defined on aD with functions defined on aDh, 

define the projection ir: a3D & aDh by 

(40) ir (ei((-t)7 i+t0?+) (1 - t)eii j+ tei?1+1 

for 0 < t < 1, 1 < j < M. Thus ir maps the small arc on aD joining two adjacent 
boundary nodes to the line segment on aDh joining the same two nodes; the map 
is linear with respect to arc length on the arc and with respect to ordinary length 
on the line segment. Finally, note that 

(41) I9Df = Ihf 0 r. 

As noted before, instead of working directly with maps f: aD -) F, we work 
with the corresponding maps s: a3D - S1, where f = y o s. For this purpose we 
consider the following discrete spaces. 

Definition 4.1. 

Hh = { h E C0(D&D,R) I .h E P1(7i1 [Ej]) Vj, .h satisfies (21)}, 

Hh = {Sh E C0(&D,IS) I Sh(Q) = +?ch(q) for someh C Hh}. 

By PI (Vr-1[Ej]) we mean the set of polynomials of degree one over the arc ir-1[Ej]. 

Thus Hh C T c H and Hh is an M -3 dimensional vector space, where "3" comes 
from the number of constraints in (21). Notice that these constraints correspond 
to linear equations for the (h(Oj). Moreover, Hh C T C '(, Hh is an affine space of 
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dimension M -3, and the space of variations at any Sh E Hh is naturally identified 
with Hh. 

In order to define the discrete energy functional Eh, analogous to Definition 3.3 
of the energy functional E, we require the following discrete spaces. 

Definition 4.2. 

(42) X {nUh E C (Dh; R) I Uh E PI(G) for G C 5h} 

(43) X {fh CC(&Dh;Rn) I fh Pl(Ej) for 1 < j < M}. 

Taking nr 1 we similarly define Xh and Xh. 

For fh E Xh we define the discrete harmonic extension (hfh E Xh by 

(44) Ahbhfh = 0 in Dh, 

(45) (h fh = fh on aDh, 

where Ah is the discrete Laplacian. Thus (44) is interpreted in the weak sense: 

(46) J V(@hfh)Vfbh 0 
Dh 

for all f/h c Xh such that /h = 0 on aDh. If fh X Xn, then the discrete harmonic 
extension is defined componentwise. 

4.2. The discrete energy functional. 

Definition 4.3. For Sh E Hh, the discrete energy functional Eh is defined by 

(47) Eh(Sh) = I VJ?hIh(Qy 0 Sh)1 = Dh((JhIh(Y 0 Sh)). 

That is, Eh(Sh) = Dh(Uh), where Uh is the discrete harmonic extension of 
Ih(Y 

0 Sh). We first apply Ih to aY 0 Sh since the latter is not in Xnh, not being h' 

piecewise linear. 
Note that, for a fixed parametrisation 'y, Eh(Sh) is completely determined by the 

nodal values Sh(0j), and can be computed from the values aY 0 sh(q) by solving a 
linear system of equations; see Section 5. In particular, if y E Ck, then Eh(Sh) is 
also a Ck function of Sh C 7Hh, as follows immediately from (60) since the Aij do 
not depend on -y. Finally, note that Eh is of course not the restriction of E to 'Hh. 

We are now ready to give the formulation of the discrete Plateau Problem which 
we use in this paper. 

Definition 4.4. The discrete harmonic function 

Uh = (hIh(Y7 0 Sh) 

is a discrete minimal surface spanning F, or a solution of the discrete Plateau 
Problem for 1, if and only if Sh E Hh is stationary for Eh, i.e., 

(48) (E' (Sh),h) 0 

for all (h E Hh- 

Note that we do not require monotonicity of Sh, as is the case for s in Defini- 
tion 3.6. 
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For later use we compute from (47) that 

(49) Eh(Sh) = 2 J vuh 

(50) (Eh(Sh), =h) Eh= (Sh th) VUhVVh, 

(5 1) E"(S h) (h~h) Eh2 tO (h + tVh) VUhVWh + / VVhj2 

where 

(52) Uh = :JhIh(Y o Sh), Vh = (JhIh(Q ? Sh (h), Wh = (JhIh(CY ? Sh (h)* 

Bilinearity gives a corresponding expression for distinct variations in (51). The 
map Ih (Y' o Sh (h) can be thought of as a discrete tangential vector field defined 
either along &Dh or Fh (the polygonal image of &Dh under the map Ih(Y 0 Sh)); it 
is uniquely determined by its values -y' (Sh (0j)) (h%(q) at boundary nodes qj . The 
map Vh is the discrete harmonic extension of Ih(CY o Sh Wh) and can be thought of 
as the discrete harmonic variation of Uh induced by (h. 

5. THE NUMERICAL ALGORITHM 

We now describe our algorithm for the computation of discrete minimal surfaces. 
We want to solve the equation 

El(Sh) = 0 

in the discrete space ?Hh. This is equivalent to computing Sh such that 

(El(sh), (h) = V (h E Hh. 

The abstract Newton algorithm for the solution is the following. 

Algorithm 5.1. Given an initial parametrization Sh E Hh and a tolerance e > 0: 
1. Compute El (Sh) 
2. If ||E'sh)|Hh' < 6, then go to step 5. 
3. Solve the linear problem 

Eh(Sh)(qh, h)- -KE'(Sh), h) V8h c Hh 

4. Update the solution: Sh := Sh + Tlh and go to step 1. 
5. Compute the discrete minimal surface 

Uh - (hIhC(Y 0 Sh) 

and stop. 

In order to efficiently implement this algorithm we will translate it into matrix- 
vector form. Recall that M is the number of boundary nodes on AD and N is the 
number of nodes in Dh. Recall Xh is the space defined in (42) with n = 1. By 

Hh(D Hh) 

we mean the space defined as is Hh, but without the normalisation condition (21). 
The nodal basis functions (h E Hh and V)h() C Xh are uniquely specified by 

(h )(j) =ij and h) b,(Xm) = 1lm, 

where i,j = 1, ..., M and 1,m =1, ..., N. 
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For the remainder of this section, subscripts i, j, k will range from 1 to M, and 
subscripts 1, m will range from 1 to N. 

For Sh e 'Hh, (h e Hh and Uh C XJn let 

Si = Sh(0i) C SI, i =h(i) C R, Ul = Uh(XI) c R]. 

Then 
M N 

(h 
= 

i),it Uh =Ul qh)(1. 

i=l 1=1 

The coefficient vectors will be written 

S=(SI,..... , sm) E (SI)M, (tj I (6::M) E RMl 
U = (Ul, - . . UN) (Rn)N. 

Given ( E IRM the corresponding function (h belongs to Hh iff the normalisations 
corresponding to (21) are satisfied. It is easily seen that this is equivalent to 

M 

ZEi??2 i (ib? - i) = 0 
i= 1 

E (i+l (i (COS -COS 0, 

S 41 1 (i (sin?i -sinXi) 0, 

where bM+1 = i + 2wr. We write the above linear constraints as 

(53) L- = o. 

We will need to compute Ej(Sh) and EK(Sh); see (50) and (51). For this, first 
note that from the definition of Ih we have 

M 

IhQ(oYSh) 5 O = Y(si), 
h= 

a Dh 

M 

Ih(-Y ? S h (h) = > i fW h Y (Si), h=1 Dh 

M 

Ih(C 0 Sh (hT1h) = i iT1i ji) "Y " (Si). 
h=1 Dh 

In order to compute the effect of the discrete harmonic operator 'Ih applied to 
the above quantities, we need the (scaled) discrete Poisson kernel functions. More 

precisely, for i = 1,... , M, the functions K(h) = (Jh (/h C) Xh are uniquely h h a~Dh 
defined by 

(54) IDVK()V+) 0 O for M < I < N 
Dh 

(55) Kh) = fh) on &Dh; 

see (44)-(46). 
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In order to compute the K,() and for later use, define the N x N stiffness matrix 
S= [Sir] by 

(56) Sln- vJ vg(4). 

The N x N matrix So [So?n], and the N-vectors b(i) = (b(i)) for i = 1,... , Ml 
are defined by 

(57) = S177, 
M<Sir <,m<N 

and b( ) - 
k)lm~1 

0 otherwise 
<i S~ M lN 

Note that So is a symmetric matrix with 4 blocks, of which the upper right and 
lower left are zero matrices. 

Let 
N 

K(t 
=h 

E Ki(t) X,(l) 

1=1 

Then from (54) and (55), the N-vectors 

KU (K( , ,KN)) 

for i - 1,=.. , M are each given by solving the system of equations 

(58) S(-) K(t) = b(") 

Note that the matrix S(0) is independent of i. 
The M x M harmonic stiffness matrix A is defined by 

Aij= VK (")'V K (d)= VKs('i) vV)(2), 

and from the preceding we have 
N N 

(59) Aij K/2)K(3),Slm N (0S1. 
I1,rn=l 1=1 

Of course, for computational purposes the second expression is much more efficient. 
In terms now of previously computed quantities, it follows from (47), (50), (51) 

and the preceding that 

1 N 
(60) Eh(sh) = 5 A,,y(s) .y(s), 

A0l 

(61) (E-(s 5 Ay,y(s,) * y'(sj) (j, 
I,j=l 

N/I 

(62) EK((sh)(r7h, i) 5E A,( y(s,) .'/"(s3) 6, +?y'(s2) y<(s.) 6 

Moreover, the discrete harmonic surface corresponding to sl, is given by 

(0K 
N All 

(63) ) h / I 
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We now give the previous algorithm in matrix-vector form. In the following, the 
vector g and the matrix B correspond to E'(sh) and E"(sh), respectively, while 
the equation E"(Sh)(71h, (h) = -(E'(Sh), ih) V8h E Hh becomes the equation 
Brj =-g together with the (constraint) equation Lj = o. 

Algorithm 5.2. Suppose a triangulation Dh of the unit disc is given: 

1. Compute the N x N stiffness matrix S, 

s=Slm = J V<V) ( m)- 
Dh 

2. Define So and b(i) as in (57) and solve the N x N systems of equations 

SK()=- b(0) 

for i=,. ,M. 
3. Compute and save the M x M harmonic stiffness matrix 

N 

A = Aij ZK(i)Slij. 
1=1 

Suppose, furthermore, a parametrised curve iy, an initial vector Sh ' Hh, and a 
tolerance E > 0 are given. Then: 

4. Compute the M-dimensional "gradient vector" g = (gj), 
M 

gj Z Aijy(si) .1'(sj). 
i=l1 

5. If gl < E, then go to step 8. 
6. Solve the M x M linear system of equations 

Br = -9, Lrj = o, 

where B = [Bij] is the M x M matrix 
M 

Bij = Aij 
- (Si) <(sj) + 6ij EAkjI(Sk) * (Sj), 

k=1 

and L is as in (53). 
7. Update the solution 

s := s + rj 

and go to step 4. 
8. Compute the discrete minimal surface 

N 

Uh = ?hlh(Y 0 Sh) (U)h 

by solving 

Sm?) = Y) 

where 

ad = (Ust op UM, * *UN), 

-Y = b((si), . *Y(Sm)) o,* * *, ?), 

and stop. 
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Note that the computation of the harmonic stiffness matrix A depends only on 
the triangulation, and not on -y or Sh. Thus steps 1-3 may be performed just once 
independently of i for each grid; in steps 4-7 only A is needed from steps 1-3. 
The sparse matrix S is used in step 8. It is not necessary to store the K(i). In 
particular, it is better to solve the system in step 8 directly, rather than saving the 
K(i) and using (63) to find u. 

The algorithm requires O(N3/2) operations. Each of the M sparse equations 
in step 2 can typically be solved in O(N) operations to within a prescribed error 
by a conjugate gradient algorithm, and M = O(N'/2). Step 3 requires O(M2) = 
O(N) operations, because of the sparsity of S. Thus the initial set-up requires 
O(N3/2) operations. Step 4 requires O(M2) = O(N) operations. In step 6 the 
computation of B requires O(M2)= O(N) operations, and the solution of the (full) 
system requires O(M2)= O(N) operations by an iterative method. Thus each loop 
through steps 4-7 requires O(N) operations. The number of loops required to find 
the M entries in g is typically O(M). Finally, the sparse system in step 8 can be 
solved in O(N) operations by a conjugate gradient method. 

6. IMPLEMENTATION AND NUMERICAL RESULTS 

The classical Enneper surface with parameter R, which acts as a bifurcation 
parameter, is a good test example because here the exact solution for the unstable 
case is known. For 0 < R < 1 Enneper's surface is area minimising and is the 
unique solution of Plateau's Problem. For 1 < R < 3 one observes three distinct 
solutions of Plateau's Problem two area minimisers and one unstable minimal 
surface, but this has only been proved if rO < R < \3 for some ro near v3. For a 
discussion of this important example and further references, see [N2], particularly 
??118, 388-395, A14-16. Here, we compute the unstable solution and calculate the 
order of convergence between the smooth solution and the discrete solution. 

The boundary curve is given by 

I (s) = Rcoss-R 3/3cos3s 

2(S) = Rsins+R 3/3sin3s 

y3 (S) - R2 cos 2s 

for s E [0, 27r]. The continuous solution is the harmonic continuation of this 
parametrisation. Denote by eh the error between the continuous solution and the 
discrete solution. For two successive grids with grid sizes h1 and h2 the experimen- 
tal order of convergence is 

eoc = hn eh /ln 1h 
eh2 h2 

In each of the three cases a different grid was used for the computations in order 
to make the comparison of the orders of convergence more realistic. The grids are 
based on initial macro triangulations of the unit disk which are of quadrilateral, 
hexagonal, or pentagonal form. 
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Stable Enneper Surface, R=0.9, hexagonal grid 

level [ h L2-error eoc L2] H -error eoc H I energy E 

0 1.0000 1.9557 e-1 - 1.3301 - 3.8318 
1 0.5176 1.0617 e-1 0.928 8.5964 e-1 0.663 4.8395 
2 0.3098 3.1492 e-2 2.368 4.4964 e-1 1.263 5.0842 
3 0.1685 7.8183 e-3 2.288 2.2709 e-1 1.122 5.1432 
4 0.0875 1.9786 e-3 2.095 1.1389 e-1 1.052 5.1576 
5 0.0445 3.1723 e-4 2.709 5.6979 e-2 1.025 5.1612 

Enneper Surface, R = 1.0, pentagonal grid 

level [h L2-error eoc L2 H-error | eoc Hr I energy E 
1 0.6641 1.0586 e-1 - 1.1595 - 6.5176 
2 0.3320 2.9051 e-2 1.866 6.3118 e-1 0.877 7.1272 
3 0.1843 7.4972 e-3 2.302 3.2300 e-1 1.138 7.2799 
4 0.0964 1.8916 e-3 2.124 1.6250 e-1 1.060 7.3178 
5 0.0492 4.7398 e-4 2.058 8.1384 e-2 1.028 7.3272 

Unstable Enneper Surface, R=1.1, quadrilateral grid 

level I h L2-error eoc L2 1 H'-error eoc H' ] energy E 
1 0.7654 1.8741 e-1 - 1.5713 - 8.1395 
2 0.3902 4.9817 e-2 1.967 8.8969 e-1 0.844 9.6962 
3 0.2102 1.2713 e-2 2.207 4.6046 e-1 1.065 10.1150 
4 0.1110 3.1975 e-3 2.161 2.3238 e-1 1.071 10.2208 
5 0.0569 8.0072 e-4 2.071 1.1647 e-1 1.033 10.2473 

In order to demonstrate the sharpness of our error estimates we include an 
example from [DH3]. We do not prove convergence if the kernel of the second 
derivatives of E is nontrivial. The following experiment shows that in general these 
results cannot be improved. The example uses the exact formula for a minimal 
surface u = (y o s) with a branch point at the origin. In this case the kernel of 
E"(s) is well known and we are able to subtract the singular part of the solution, 
i.e., to project the solution onto the space orthogonal to the kernel and so obtain 
the regular part. 

Branch point (order=1, index=3) 

level I h I L2-error I eoc L2| H'-error I eoc H 
2 0.3902 7.151 e-3 - 3.455 e-2 - 

3 0.2102 7.817 e-3 -0.1 2.875 e-2 0.3 
4 0.1110 1.119 e-2 -0.6 3.920 e-2 -0.5 
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Branch point: regular part 

level I h I L2-error I eoc L2| H1-error I eoc H1 

2 0.3902 3.761 e-3 - 1.878 e-2 - 

3 0.2102 7.292 e-4 2.7 3.879 e-3 2.6 
4 0.1110 9.881 e-5 3.1 5.977 e-4 2.9 

FIGURE 2. Discrete solution of the Plateau Problem with 96 triangles 

FIGURE 3. Discrete solution of the Plateau Problem with 1536 triangles 
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Finally we compute a nonminimising solution for a well-known boundary curve 
consisting of four circles, parallel in pairs and connected in a smooth way. The 
distance between two parallel circles is e = 0.5 for the coarse grid in Figure 2 and 
e = 0.2 for the fine grid in Figure 3. The radii of the circles are 1.0 in either case. 
The four connections between the circles are of length proportional to 6 and thus 
at these parts of the boundary very high curvatures occur. These curvatures are 
equivalent to large C2-norms of the parametrisation 7y and, as can be seen from 
the constants in our error estimates, large errors between discrete and continuous 
solution can be expected at these points. In fact, these parts of the discrete minimal 
surface induce many Newton steps in our algorithm. 
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